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1. Introduction

In a recent Office Note (#53), an account was given of our
investigations into the stability characteristics of the 'modified' semi-
implicit method. The basic concept of this method is the separation of
the external mode (treated implicitly) from the internal modes (treated
explicitly). The failure to satisfactorily achieve this separation has
been reported in Office Note 53, which serves as the obituary for the
approach.

There were some loose ends, however: we stated that the apparent
instability was associated with the internal computational mode, which for
reasons unknown amplifies very rapidly for increasing At. Moreover, in
the C-plane representation, the root which corresponds to the internal
computational mode remains on the real axis for all At.-1

Shuman has suggested that this behavior might be caused by not
clearly separating the external and internal modes. In particular, he
argued that-the treatment outlined in Section 4 of #53 might result in the
internal mode being treated explicitly with respect to the thermodynamic
equation, but implicitly in the momentum equations. We perhaps could have
seen this, had we been able to solve analytically the eighth-order poly-
nomial in C, the time dependent part of the solution, resulting from the
requirement that the determinant of the coefficient matrix vanish. Un-
fortunately, this does not seem tractable.

As a means of avoiding this difficult problem, Shuman has pointed
out that one might examine the stability properties of a mixed implicit-
explicit integration scheme applied to a system which permits only an
external mode. The purpose of this note is to indicate the results of
carrying out this suggestion.

2. Linear Analysis of a Mixed Implicit-Explicit System

Consider the linear equations

Du + g ah (1)
Dt 85x=0

Dh + H u = 0 , (2)
at ax

which govern the behavior of a homogeneous, incompressible fluid under the

This means that the amplification occurs at zero phase; i.e., the ampli-
fying disturbance is stationary, but not the mean as reported in Office
Note 53.



restoring influence of gravity. Now, if the supposition that the
instability reported in Office Note 53 is due to a mixed implicit-
explicit approximation to one mode is, indeed, valid, then it would
be anticipated that a similar approximation of Eqns. (1) and (2) would
yield a similar instability.

The time derivatives will be approximated by the 'leap-frogt
scheme, thus admitting a computational mode¥ Spatial derivatives will
be treated analytically for the purposes of this analysis. In order to
simulate the mixed implicit-explicit approximation, we choose to approxi-
mate the height-gradient term in Eqn. (1), and the divergence term in
Eqn. (2), explicitly:

un+ l _un - 1 + gAt(hn+l + hn-1)x = 0 (3)

hn+ - hn- 1 + 2HAt(un) = 0 (4)

where spatial differentiation is indicated by a subscript 'x". We now
assume solutions of the form

q = qneikx (5)

Stability requires j% < 1; we now enquire as to whether solutions exist
for this criterion, and under what circumstances.

Substitution of Eqn. (5) into Eqns. (3) and (4) yields the system

(%2-1)U + { gikAt ( 2+1) }h = 0 (6)

(C2-l)h + { 2ikAtH}u = 0 (7)

The determinant of this system must vanish, giving the frequency equation

(2_1)2 + 2(kAt)2 gH(%2+1l) = 0 (8)

or, defining E =kAt, c2 = gH, this may be rewritten as

4 + 2E2 C2 3 _ 2%2 + 2s2c2 C + 1 = 0 (9)

Now, if we expand the product (C2+aC+l)(C2+bC+l) = 0, we find

4 + (a+b)% 3 +(2+ab) 2 + (a+b) + 1 = (10)

Comparison of the coefficients of each term of Eqns. (9) and (10) reveals
the following values of a,!5

8 -8

a= (22c 2 /(2s2c 2 )2+16 D (11)
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2e2c 2 ± /(2s2c2 )2 + 16
b = 2 = 2 D

where D = 252c2 ± /(2e2c2)2+ 16. Eqn. (9) may be expressed as

{ 42 _ (C +ll }2+iD+J1 = O -

The two quadratic factors of Eqn.
for :

(13) yield the following expressions

C = {8+ /4 - 4 }

= ¼ {-D ±V+D- 16 }

With respect to Eqn. (14), if

64< 4

then the radical is negative, and :(14) may be rewritten as

2= { D i /4--}

and the magnitude of ~ is

4 = {¼ + 464 }6 1

so that computational neutrality is assured if the criterion (16)
satisfied. If not, C is a pure real number, and its magnitude is

|Ct = { ¼[ D + 64 _ 4] }I >,1

which clearly demonstrates instability.

Similar arguments may be advanced with respect to Eqn. (16):
the inequality

D2< 16

(14)

(15)

(16)

(17)

(18)

is

(19)

if

(20)

is satisfied, C is complex with magnitude unity; if not, C is real with
magnitude greater than unity.

(12)

(13)



Now, the inequality (16) may be rewritten as

D2 > 16 (21)

and it is immediately obvious that both (20) and (21) cannot simul-
taneously be satisfied. Therefore, the solutions corresponding to
either (14) or (15) will be absolutely unstable, irrespective of the
value of At. Moreover, the unstable solutions will always lie on the
real axis of the complex C-plane.

This result strongly supports Shuman's contention that the implicit
method outlined in Section 4 of Office Note 53 does not achieve com-
pletely explicit treatment of the internal gravity mode. It thus appears
that we may have buried a live idea prematurely.
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